ArrayList 简介 本文内容均以JDK8为例。
ArrayList
继承于 AbstractList
,实现了 List
, RandomAccess
, Cloneable
, java.io.Serializable
这些接口。
List
: 表明它是一个列表,支持添加、删除、查找等操作,并且可以通过下标进行访问。
RandomAccess
: 这是一个标志接口,表明实现这个接口的 List
集合是支持 快速随机访问 的。在 ArrayList
中,我们可以通过元素的序号快速获取元素对象,这就是快速随机访问。
Cloneable
:表明它具有拷贝能力,可以进行深拷贝或浅拷贝操作。
Serializable
: 表明它可以进行序列化和反序列化操作,也就是即可以将对象序列化为字节流 进行持久化存储或网络传输,也可以从字节流反序列化为对象 ,非常方便。
ArrayList
的底层是数组队列,相当于动态数组 。与 Java 中的数组相比,它的优点是容量能动态增长。在添加大量元素前,应用程序可以使用ensureCapacity
操作来增加 ArrayList
实例的容量。这样可以减少递增式再分配的数量,提高程序执行的效率。
ArrayList和Vector的区别?
ArrayList
是 List
的主要实现类,底层使用 Object[]
存储,适用于频繁的查找工作,线程不安全。
Vector
是 List
的古老实现类,底层使用Object[]
存储,通过synchronized 关键字保证线程安全。
ArrayList可以添加null值吗? ArrayList
中可以存储任何类型的对象,包括 null
值。但是不建议向ArrayList
中添加 null
值, 因为null
值无意义,会让代码难以维护例如忘记做判空处理就会导致空指针 异常。
Arraylist 与 LinkedList 区别?
是否保证线程安全: ArrayList
和 LinkedList
都不是同步的,也就是不保证线程安全;
底层数据结构: ArrayList
底层使用的是 Object 数组 ;LinkedList
底层使用的是 双向链表 数据结构(JDK1.6 之前为双向循环链表,JDK1.7 取消了循环。注意双向链表和双向循环链表的区别,下面有介绍到!)
插入和删除是否受元素位置的影响:
ArrayList
采用数组存储,所以插入和删除元素的时间复杂度受元素位置的影响。 比如:执行add(E e)
方法的时候, ArrayList
会默认在将指定的元素追加到此列表的末尾,这种情况时间复杂度就是 O(1)。但是如果要在指定位置 i 插入和删除元素的话(add(int index, E element)
),时间复杂度就为 O(n)。因为在进行上述操作的时候集合中第 i 和第 i 个元素之后的(n-i)个元素都要执行向后位/向前 移一位的操作。
LinkedList
采用链表存储,所以在头尾插入或者删除元素不受元素位置的影响(add(E e)
、addFirst(E e)
、addLast(E e)
、removeFirst()
、 removeLast()
),时间复杂度为 O(1),如果是要在指定位置 i
插入和删除元素的话(add(int index, E element)
,remove(Object o)
,remove(int index)
), 时间复杂度为 O(n) ,因为需要先移动到指定位置 再插入和删除。
是否支持快速随机访问: LinkedList
不支持高效的随机元素访问,而 ArrayList
(实现了 RandomAccess
接口) 支持。快速随机访问就是通过元素的序号快速获取元素对象(对应于get(int index)
方法)。本质是因为LinkedList
元素的存储不是连续的。
内存空间占用: ArrayList
的空间浪费主要体现在在 list 列表的结尾会预留一定的容量空间,而 LinkedList
的空间花费则体现在它的每一个元素都需要消耗比 ArrayList
更多的空间(因为要存放直接后继和直接前驱以及数据)。
ArrayList核心源码 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 package java.util;import java.util.function.Consumer;import java.util.function.Predicate;import java.util.function.UnaryOperator;public class ArrayList <E> extends AbstractList <E> implements List <E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L ; private static final int DEFAULT_CAPACITY = 10 ; private static final Object[] EMPTY_ELEMENTDATA = {}; private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; transient Object[] elementData; private int size; public ArrayList (int initialCapacity) { if (initialCapacity > 0 ) { this .elementData = new Object [initialCapacity]; } else if (initialCapacity == 0 ) { this .elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException ("Illegal Capacity: " + initialCapacity); } } public ArrayList () { this .elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } public ArrayList (Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0 ) { if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { this .elementData = EMPTY_ELEMENTDATA; } } public void trimToSize () { modCount++; if (size < elementData.length) { elementData = (size == 0 ) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } public void ensureCapacity (int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) ? 0 : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } private void ensureCapacityInternal (int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity); } ensureExplicitCapacity(minCapacity); } private void ensureExplicitCapacity (int minCapacity) { modCount++; if (minCapacity - elementData.length > 0 ) grow(minCapacity); } private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8 ; private void grow (int minCapacity) { int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1 ); if (newCapacity - minCapacity < 0 ) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0 ) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity (int minCapacity) { if (minCapacity < 0 ) throw new OutOfMemoryError (); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } public int size () { return size; } public boolean isEmpty () { return size == 0 ; } public boolean contains (Object o) { return indexOf(o) >= 0 ; } public int indexOf (Object o) { if (o == null ) { for (int i = 0 ; i < size; i++) if (elementData[i]==null ) return i; } else { for (int i = 0 ; i < size; i++) if (o.equals(elementData[i])) return i; } return -1 ; } public int lastIndexOf (Object o) { if (o == null ) { for (int i = size-1 ; i >= 0 ; i--) if (elementData[i]==null ) return i; } else { for (int i = size-1 ; i >= 0 ; i--) if (o.equals(elementData[i])) return i; } return -1 ; } public Object clone () { try { ArrayList<?> v = (ArrayList<?>) super .clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0 ; return v; } catch (CloneNotSupportedException e) { throw new InternalError (e); } } public Object[] toArray() { return Arrays.copyOf(elementData, size); } @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0 , a, 0 , size); if (a.length > size) a[size] = null ; return a; } @SuppressWarnings("unchecked") E elementData (int index) { return (E) elementData[index]; } public E get (int index) { rangeCheck(index); return elementData(index); } public E set (int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } public boolean add (E e) { ensureCapacityInternal(size + 1 ); elementData[size++] = e; return true ; } public void add (int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1 ); System.arraycopy(elementData, index, elementData, index + 1 , size - index); elementData[index] = element; size++; } public E remove (int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1 ; if (numMoved > 0 ) System.arraycopy(elementData, index+1 , elementData, index, numMoved); elementData[--size] = null ; return oldValue; } public boolean remove (Object o) { if (o == null ) { for (int index = 0 ; index < size; index++) if (elementData[index] == null ) { fastRemove(index); return true ; } } else { for (int index = 0 ; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true ; } } return false ; } private void fastRemove (int index) { modCount++; int numMoved = size - index - 1 ; if (numMoved > 0 ) System.arraycopy(elementData, index+1 , elementData, index, numMoved); elementData[--size] = null ; } public void clear () { modCount++; for (int i = 0 ; i < size; i++) elementData[i] = null ; size = 0 ; } public boolean addAll (Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); System.arraycopy(a, 0 , elementData, size, numNew); size += numNew; return numNew != 0 ; } public boolean addAll (int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); int numMoved = size - index; if (numMoved > 0 ) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0 , elementData, index, numNew); size += numNew; return numNew != 0 ; } protected void removeRange (int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null ; } size = newSize; } private void rangeCheck (int index) { if (index >= size) throw new IndexOutOfBoundsException (outOfBoundsMsg(index)); } private void rangeCheckForAdd (int index) { if (index > size || index < 0 ) throw new IndexOutOfBoundsException (outOfBoundsMsg(index)); } private String outOfBoundsMsg (int index) { return "Index: " +index+", Size: " +size; } public boolean removeAll (Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, false ); } public boolean retainAll (Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, true ); } public ListIterator<E> listIterator (int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException ("Index: " +index); return new ListItr (index); } public ListIterator<E> listIterator () { return new ListItr (0 ); } public Iterator<E> iterator () { return new Itr (); }
ArrayList的扩容机制 先从 ArrayList 的构造函数说起,ArrayList 有三种方式来初始化,构造方法源码如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 private static final int DEFAULT_CAPACITY = 10 ; private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; public ArrayList () { this .elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } public ArrayList (int initialCapacity) { if (initialCapacity > 0 ) { this .elementData = new Object [initialCapacity]; } else if (initialCapacity == 0 ) { this .elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException ("Illegal Capacity: " + initialCapacity); } } public ArrayList (Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0 ) { if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { this .elementData = EMPTY_ELEMENTDATA; } }
以无参数构造方法创建 ArrayList
时,实际上初始化赋值的是一个空数组。
当真正对数组进行添加元素操作时,才真正分配容量。即向数组中添加第一个元素时,数组容量扩为 10。
补充:JDK6 new 无参构造的 ArrayList
对象时,直接创建了长度是 10 的 Object[]
数组 elementData
逐步分析 ArrayList 扩容机制 这里以无参构造函数创建的 ArrayList 为例分析
先来看 add
方法 1 2 3 4 5 6 7 8 9 10 public boolean add (E e) { ensureCapacityInternal(size + 1 ); elementData[size++] = e; return true ; }
注意 :JDK11 移除了 ensureCapacityInternal()
和 ensureExplicitCapacity()
方法
再来看看 ensureCapacityInternal()
方法 可以看到 add
方法 首先调用了ensureCapacityInternal(size + 1)
1 2 3 4 private void ensureCapacityInternal (int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); }
calculateCapacity()方法 当 要 add 进第 1 个元素时,minCapacity 为 1,在 Math.max()方法比较后,minCapacity 为 10。
1 2 3 4 5 6 7 8 9 private static int calculateCapacity (Object[] elementData, int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; }
ensureExplicitCapacity()方法 1 2 3 4 5 6 7 8 9 private void ensureExplicitCapacity (int minCapacity) { modCount++; if (minCapacity - elementData.length > 0 ) grow(minCapacity); }
我们来仔细分析一下这个过程:
当我们要 add 进第 1 个元素到 ArrayList 时,elementData.length
为 0 (因为还是一个空的 list),因为执行了 ensureCapacityInternal()
方法 ,所以 minCapacity 此时为 10。此时,minCapacity - elementData.length > 0
成立,所以会进入 grow(minCapacity)
方法。
当 add 第 2 个元素时,minCapacity 为 2,此时 elementData.length(容量)在添加第一个元素后扩容成 10 了。此时,minCapacity - elementData.length > 0
不成立,所以不会进入 (执行)grow(minCapacity)
方法。
添加第 3、4···到第 10 个元素时,依然不会执行 grow 方法,数组容量都为 10。
直到添加第 11 个元素,minCapacity(为 11)比 elementData.length(为 10)要大。进入 grow 方法进行扩容。
grow()
方法1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8 ; private void grow (int minCapacity) { int oldCapacity = elementData.length; int newCapacity = oldCapacity + (oldCapacity >> 1 ); if (newCapacity - minCapacity < 0 ) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0 ) newCapacity = hugeCapacity(minCapacity); elementData = Arrays.copyOf(elementData, newCapacity); }
int newCapacity = oldCapacity + (oldCapacity >> 1), 所以 ArrayList 每次扩容之后容量都会变为原来的 1.5 倍左右(oldCapacity 为偶数就是 1.5 倍,否则是 1.5 倍左右)! 奇偶不同,比如:10+10/2 = 15, 33+33/2=49。如果是奇数的话会丢掉小数。
“>>”(移位运算符):>> 1 右移一位相当于除 2,右移 n 位相当于除以 2 的 n 次方。这里 oldCapacity 右移了 1 位所以相当于 oldCapacity / 2。对于大数据的 二进制运算, 位移运算符比那些普通运算符的运算要快很多,因为程序底层都是基于二进制所以程序仅仅是移动一下而已,不用去计算,这样提高了效率,节省了资源。
我们再来通过例子探究一下 grow()
方法:
当 add 第 1 个元素时,oldCapacity 为 0,经比较后第一个 if 判断成立,newCapacity = minCapacity(为 10)。但是第二个 if 判断不会成立,即 newCapacity 不比 MAX_ARRAY_SIZE 大,则不会进入 hugeCapacity
方法。数组容量为 10,add 方法中 return true,size 增为 1。
当 add 第 11 个元素进入 grow 方法时,newCapacity 为 15,比 minCapacity(为 11)大,第一个 if 判断不成立。新容量没有大于数组最大 size,不会进入 hugeCapacity 方法。数组容量扩为 15,add 方法中 return true,size 增为 11。
这里补充一点比较重要,但是容易被忽视掉的知识点:
java 中的 length
属性是针对数组说的,比如说你声明了一个数组,想知道这个数组的长度则用到了 length 这个属性。
java 中的 length()
方法是针对字符串说的,如果想看这个字符串的长度则用到 length()
这个方法。
java 中的 size()
方法是针对泛型集合说的,如果想看这个泛型有多少个元素,就调用此方法来查看!
hugeCapacity()
方法。从上面 grow()
方法源码我们知道:如果新容量大于 MAX_ARRAY_SIZE
,进入(执行) hugeCapacity() 方法来比较 minCapacity
和 MAX_ARRAY_SIZE
,如果 minCapacity
大于最大容量,则新容量则为Integer.MAX_VALUE
,否则,新容量大小则为 MAX_ARRAY_SIZE
即为 Integer.MAX_VALUE - 8
。
1 2 3 4 5 6 7 8 9 10 11 private static int hugeCapacity (int minCapacity) { if (minCapacity < 0 ) throw new OutOfMemoryError (); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }
System.arraycopy()
和 Arrays.copyOf()
方法通过上面的源码,我们会发现 ArrayList 中大量调用了这两个方法。比如:我们上面讲的扩容操作以及add(int index, E element)
、toArray()
等方法中都用到了该方法!
System.arraycopy()
方法1 2 3 4 5 6 7 8 9 10 11 12 public static native void arraycopy (Object src, int srcPos, Object dest, int destPos, int length) ;
举个栗子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 public void add (int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1 ); System.arraycopy(elementData, index, elementData, index + 1 , size - index); elementData[index] = element; size++; }
Arrays.copyOf()
方法1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 public static int [] copyOf(int [] original, int newLength) { int [] copy = new int [newLength]; System.arraycopy(original, 0 , copy, 0 , Math.min(original.length, newLength)); return copy; }
再举个栗子
1 2 3 4 5 6 7 8 public Object[] toArray() { return Arrays.copyOf(elementData, size); }
两者联系和区别 联系: 看两者源代码可以发现 copyOf()
内部实际调用了 System.arraycopy()
方法
区别: arraycopy()
需要目标数组,将原数组拷贝到你自己定义的数组里或者原数组,而且可以选择拷贝的起点和长度以及放入新数组中的位置 copyOf()
是系统自动在内部新建一个数组,并返回该数组。
ensureCapacity
方法ArrayList
源码中有一个 ensureCapacity
方法不知道大家注意到没有,这个方法 ArrayList
内部没有被调用过,所以很显然是提供给用户调用的,那么这个方法有什么作用呢?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 public void ensureCapacity (int minCapacity) { int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) ? 0 : DEFAULT_CAPACITY; if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } }
意思是,我们在向 ArrayList
添加大量元素之前用 ensureCapacity
方法将容量扩容至可以容纳元素的大小,以减少增量时重新分配的次数。
通过下面的代码实际测试以下这个方法的效果:
1 2 3 4 5 6 7 8 9 10 11 12 13 public static void main (String[] args) { ArrayList<Object> list = new ArrayList <Object>(); final int N = 10000000 ; long startTime = System.currentTimeMillis(); for (int i = 0 ; i < N; i++) { list.add(i); } long endTime = System.currentTimeMillis(); System.out.println("使用ensureCapacity方法前:" + (endTime - startTime)); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 public static void main (String[] args) { ArrayList<Object> list = new ArrayList <Object>(); final int N = 10000000 ; long startTime1 = System.currentTimeMillis(); list.ensureCapacity(N); for (int i = 0 ; i < N; i++) { list.add(i); } long endTime1 = System.currentTimeMillis(); System.out.println("使用ensureCapacity方法后:" + (endTime1 - startTime1)); }
通过运行结果,可以看出向 ArrayList
添加大量元素之前使用ensureCapacity
方法可以稍稍提升性能。
不过,这个性能差距几乎可以忽略不计。而且,实际项目根本也不可能往 ArrayList
里面添加这么多元素。